我们研究了顺序预测和在线minimax遗憾的问题,并在一般损失函数下具有随机生成的特征。我们介绍了一个预期的最坏情况下的概念minimax遗憾,它概括并涵盖了先前已知的minimax遗憾。对于这种极匹马的遗憾,我们通过随机全局顺序覆盖的新颖概念建立了紧密的上限。我们表明,对于VC-Dimension $ \ Mathsf {Vc} $和$ I.I.D. $生成的长度$ t $的假设类别,随机全局顺序覆盖的基数可以在上限上限制高概率(WHP) e^{o(\ mathsf {vc} \ cdot \ log^2 t)} $。然后,我们通过引入一种称为Star-Littlestone维度的新复杂度度量来改善这种束缚,并显示与Star-Littlestone dimension $ \ Mathsf {Slsf {sl} $类别的类别允许订单的随机全局顺序覆盖$ e^{o(\ Mathsf) {sl} \ cdot \ log t)} $。我们进一步建立了具有有限脂肪的数字的真实有价值类的上限。最后,通过应用固定设计的Minimax遗憾的信息理论工具,我们为预期的最坏情况下的Minimax遗憾提供了下限。我们通过在预期的最坏情况下对对数损失和一般可混合损失的遗憾建立紧密的界限来证明我们的方法的有效性。
translated by 谷歌翻译
结构性因果模型(SCM)提供了一种原则方法,可以从经济学到医学的学科中的观察和实验数据中识别因果关系。但是,通常以图形模型表示的SCM不仅可以依靠数据,而要支持域知识的支持。在这种情况下,一个关键的挑战是缺乏以系统的方式将先验(背景知识)编码为因果模型的方法学框架。我们提出了一个称为因果知识层次结构(CKH)的抽象,用于将先验编码为因果模型。我们的方法基于医学中“证据水平”的基础,重点是对因果信息的信心。使用CKH,我们提出了一个方法学框架,用于编码来自各种信息源的因果研究,并将它们组合起来以得出SCM。我们在模拟数据集上评估了我们的方法,并与敏感性分析的地面真实因果模型相比,证明了整体性能。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
联邦学习(FL)的稳健性对于分布式培训的准确全球模型的分布式培训至关重要。通过典型聚合模型更新的协作学习框架容易受到来自对抗客户的中毒攻击。由于全局服务器和参与者之间的共享信息仅限于模型参数,因此检测错误的模型更新是挑战性的。此外,现实世界数据集通常在参与者中异质且不独立,并且不独立,并且在非IID中分布(非IID),这使得这种稳健的流水线更加困难。在这项工作中,我们提出了一种新颖的鲁棒聚集方法,联邦鲁棒自适应蒸馏(Fedrad),以检测基于中值统计的属性的对手和鲁棒地聚合本地模型,然后执行适应的集合知识蒸馏。我们运行广泛的实验,以评估拟议的方法对最近公布的作品。结果表明,FEDRAD在存在对手的情况下表现出所有其他聚合器,以及异构数据分布。
translated by 谷歌翻译